
BIOSTATISTICS 
TOPIC 8: ANALYSIS OF CORRELATIONS 
I. SIMPLE LINEAR REGRESSION 

 
 Give a man three weapons - correlation, regression and a pen -  

and he will use all three.  
Anon, 1978 

 
 So far we have been concerned with analyses of differences. And, in doing so, we 
have considered measuring n subjects on a single outcome variable (or two groups of n 
subjects on one variable). Such measurements have yielded univariate frequency 
distribution and the analysis is often referred to as univariate analysis. Now, we are 
considering n subjects and in each subject has two measures available; in other words, we 
have two variables per subject, say x and y. Our interest in this kind of data is obviously to 
measure relationship between the two variables. We can plot the value of y against the 
value of x in a scatter diagram and assess whether the value of y varies systematically with 
the variation in values of x. But we still wants to have a single summary measure of the 
strength of relationship between x and y.   
 
 In his book "Natural Inheritance", Francis Galton wrote: "each peculiarity in a man 
is shared by his kinsman, but on the average, in a less degree. For example, white tall 
fathers would tend to have tall sons, the sons would be on the average shorter than their 
fathers, and sons of short fathers, though having heights below the average for the entire 
population, would tend to be taller than their fathers." He, then, concluded a phenomenon 
called "law of universal regression" which was the origin of the topic we are learning right 
now. Today, the characteristics of returning from extreme values toward the average of the 
full population is well recognised and is termed "regression toward the mean".  
 
 We will consider methods for assessing the association between continuous 
variables using two methods known as correlation analysis and linear regression 
analysis, which are happened to be some of the most popular statistical techniques in 
medical research.  
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I. CORRELATION ANALYSIS 
 
1.1. THE COVARIANCE AND COEFFICIENT OF CORRELATION 
 
 In a previous topic, we stated that if Y and Y are independent variables, then the 
variance of the sum or difference between X and Y is equal to the variance of X plus the 
variance of Y, that is: 
 
   var(X + Y) = var(X) + var(Y) 
 
 what  happen if X and Y are not independent? Before discussing this problem, we 
introduce the concepts of covariance and correlation. 
 
 In elementary trigonometry we learn that for a right triangle, if we let the 
hypotenuse side be c and the other two sides be a and b, the Pythagoras' theorem states 
that: 
 
   c a b2 2 2= +  
 
 and in any triangle:  
 
   c a b ab C2 2 2 2= + − .cos  (Cosine rule). 
 
 Analogously, if we have two random variables X and Y, where X may be the height 
of father and Y may be the height of daughter, their variance can be estimated by: 
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respectively. 
 
 Furthermore, if X and Y are independent, we have: 
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   s s sX Y X Y+ = +2 2 2     [2] 
 
 Let us now discuss X and Y in the context of genetics. Let X be BMD of father and Y 
be the BMD of daughter. It is clear that we can find another expression for the relationship 
between X and Y by multiplying each father's BMD from its mean ( )xxi −  by 
corresponding deviation of his daughter ( )yyi − , instead of squaring the father's or 

daughter's deviation, before summation. We refer this quantity to as covariance between X 
and Y and is denoted by Cov(X, Y); that is: 
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 By definition and analogous to the Cosine law in any triangle, we have: if X and Y 
are not independent, then: 
 
 :  ( )YXCovYXYX ,2222 ++=+ σσσ   [4] 

 
 A number of points need to be noted here:  
 
 (a) Variances as defined in [1] are always positive since they are derived from sums 
of squares, whereas, covariances as defined in [3] are derived from sum of cross-products 
of deviations and so may be either positive or negative.  
 
 (b) A positive value indicates that the deviations from the mean in one distribution, 
say father's BMDs, are preponderantly accompanied by deviations in the other, say 
daughter's BMDs, in the same direction, positive or negative.  
 
 (c) A negative covariance, on the other hand, indicates that deviations in the two 
distributions are preponderantly in opposite directions.  
 
 (d) When the deviation in one of the distribution is equally likely to be accompanied 
by deviation of like or opposite sign in the other, the covariance, apart from errors of 
random sampling, will be zero. 
 
 The importance of covariance is now obvious. If variation of BMD is under genetic 
control we would expect higher BMD fathers generally have high BMD daughters and low 
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BMD fathers generally have low BMD daughters. In other words, we should expect them 
to have positive covariance. Lack of genetic control would produce a covariance of zero. It 
was by this means that Galton first showed stature in man to be under genetic control. He 
found that the covariance of parent and offspring, and also that of pairs of siblings, was 
positive.  
 
 The size of the covariance relative to some standard gives a measure of the strength 
of the association between the relatives. The standard taken is that afforded by the 
variances of the two separate distributions, in our case, of father's BMD and daughter's 
BMD. We many compare the covariance to these variances separately and we do this by 
calculating the regression coefficients which have the forms: 
 

   ( )
( )X

YXCov
var

,   (regression of daughters on father) 

 

 or   ( )
( )Y

YXCov
var

,  (regression of fathers on daughters) 

 
 we can also compare the covariance with the two variances at once: 
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 This is called the coefficient of correlation and is denoted by r. 
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  [5] 

 
 r will have a maximum value of |1| (a complete determination of daughter's BMD 
by father's BMD) and minimum value of 0 (no relationship between father's and daughter's 
BMDs). 
 
 With some algebraic manipulation, we can show that [5] can be written in another 
way: 
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 where sx  and sy  are standard deviations for X and Y variable, respectively. 

 
 
1.2. TEST OF HYPOTHESIS 
 
 One obvious question is that whether the observed coefficient of correlation (r) is 
significantly different from zero. Under the null hypothesis that there is no association in 
the population (r = 0), it can be shown that the statistic: 
 

    t = r n
r
−
−

2
1 2  

 
 has a t distribution with n -2 df.  
 
 
 On the other hand, for a moderate or large sample size, we can set up a 95% 
confidence interval of r by using a theoretical distribution of r. It can be shown that the 
sampling distribution of  r is not normally distributed. We can, however, transform it to a 
Normal distributed quantity by using the so-called Fisher's transformation in which: 
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 The standard error of z is approximately equal to: 
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 Thus, approximate 95% confidence interval is: 
 

   z - 1 96
3

.
n −

  to z + 1 96
3

.
n −

 

 
 Of course, we can back-transform the data to obtain 95% confidence interval for r 
(this is left for exercise). 
 
 
 Example 1: Consider a clinical trial involving patients presenting with 
hyperlipoproteinaemia, baseline values of the age of patients (years), total serum 
cholesterol (mg/ml) and serum calcium level (mg/100ml) were recorded. Data for 18 
patients are given below: 
 
 Patient Age Cholesterol 
  (X) (Y) 
 1 46 3.5  
 2 20 1.9  
 3 52 4.0  
 4 30 2.6  
 5 57 4.5  
 6 25 3.0  
 7 28 2.9  
 8 36 3.8  
 9 22 2.1  
 10 43 3.8  
 11 57 4.1  
 12 33 3.0  
 13 22 2.5  
 14 63 4.6  
 15 40 3.2  
 16 48 4.2  
 17 28 2.3  
 18 49 4.0  
 Mean 38.83 3.33 
 S.D 13.596 0.838 
 
 
 Let age be X and cholesterol be Y, to calculate the correlation coefficient, we need 
to calculate the covariance Cov(X, Y) which is: 
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        = 10.68 
 
 Then the coefficient of correlation is: 
 

  r = ( )
yxss

YXCov ,  = 10 68

13 596 0 838

.

. .×
 = 0.937. 

 
 To test for the significance of r, we need to covert it to the z score as given in [7]: 
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 with the standard error of z is given in [8]: 
 

  ( )
3

1
−

=
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zSE  = 1

18 3−
 = 0.2582 

 
 Then the t ratio is 0.56 / 0.2582 = 2.165 which exceeds the expected value of 2.11 
(with 17 df and 5% significance level), we conclude that there is an association between 
age and cholesterol in this sample of subjects. // 
 
 
1.3. TEST FOR DIFFERENCE BETWEEN TWO COEFFICIENTS OF 
CORRELATION 
 
 Suppose that we have two sample coefficients of correlation r1  and r2  which were 
estimated from two unknown population coefficients ρ1 and ρ2 , respectively. Suppose 
further that r1  and r2  were derived from two independent samples of n1 and n2 subjects, 
respectively. To test the hypothesis that ρ1 = ρ2  versus the alternative hypothesis that ρ1 ≠  
ρ2 , we firstly convert these sample coefficients into a z-score: 
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 By theory, the statistic z z1 2−  is distributed about the mean  
 

   Mean(z z1 2− ) = ( ) ( )1212 21 −
−

− nn
ρρ  

 
where ρ  is the common correlation coefficient, with variance 
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 If the samples are not small or if n1 and n2 are not very different, the statistic 
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 can be used as a test statistic of the hypothesis. 
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II. SIMPLE LINEAR REGRESSION ANALYSIS 
 
 We are now extending the idea of correlation into a rather mechanical concept 
called regression analysis. Before doing so, let us briefly recall this idea in the historical 
context. As mentioned earlier, In 1885, Francis Galton introduced the concept of 
"regression" in a study that demonstrated that offspring do not tend toward the size of 
parents, but rather toward the average as compared to the parents. The method of regression 
has, however, a longer history. In fact, a legendary French mathematician by the name of 
Adrien Marie Legendre published the first work on regression (although he did not use the 
word) in 1805. Still, the credit for discovery of the method of least squares generally given 
to Carl Friedrich Gauss (another legendary mathematician), who used the procedure in the 
early part of the 19th century.   
 
 Much used (and perhaps overused) cliche in data analysis "garbage in - garbage 
out" and "the results are only as good as the data that produced them" apply in the building 
of regression models. If the data do not reflect a trend involving the variables, there will be 
no success in model development or in drawing inferences regarding the system. Even with 
some types of relationship does exist, this does not imply that the data will reveal it in a 
clearly detectable fashion. 
 
 Many of the ideas and principles used in fitting linear models to data are best 
illustrated by using simple linear regression. These ideas can be extended to more complex 
modelling techniques once the basic concepts necessary for model development, fitting and 
assessment have been discussed. 
 
 Example 1 (continued): The plot of cholesterol (y-axis) versus age (x-axis) yields 
the following relationship:  
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 From this graph, we can see that cholesterol level seems to vary systematically with 
age (which was confirmed earlier by the correlation analysis); moreover, the data points 
seem to scatter around the line connects between two points (20, 2.2) and (65, 4.5). Now, 
we learned earlier (in Topic 1) that for any two given points in a two-dimensional space, 
we could construct a straight line through two points. The same principle is applied here, 
although the technique of estimation is slightly more complicated.  

 
 
2.1. ESTIMATES OF LINEAR REGRESSION MODEL 
 
 Let the observed pairs of values x and y be ( )11, yx , ( )22 , yx , . . . , ( )nn yx , . The 

essence of a regression analysis is concerned with relationships between a response or 
dependent variable (y) and explanatory or independent variable (x). The simplest 
relationship is the straight line model: 
 
   y xi i i= + +β β ε0 1    [8] 
 
 In this model, β0  and β1 are unknown parameters and are to be estimated from the 

observed data, ε is a random error or departure term representing the level of inconsistency 
present in repeated observations under similar experimental conditions. To proceed with 
the parameter estimation, we have to make some assumptions  

 (i) The value of x is fixed (not random); 
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 and on the random error ε, we assume that ε's are: 
 
 (i) normally distributed; 
 (ii) has expected value 0 i.e. E(ε) = 0   
 (iii) constant variance σ2 for all levels of X; 
 (iv) and successively uncorrelated (statistically independent).  
 
 
 Because β0  and β1 are parameters (hence, constants) and that the value of x is fixed, 
we can obtain the expected value of [8] as : 
 
  E( yi) = β0  + β1 xi    [9] 

 
 and  var( yi)   = var(β0  + β1 xi  + εi ) 
   =  var(ε i ) 
   =  σ2.    [10] 
 
 LEAST SQUARE ESTIMATORS 
 
 To estimate β0  and β1 from a series of data points ( )11, yx , ( )22 , yx , . . . , ( )nn yx , , 

we use the method of least squares. This method estimates two constants b0 and b1 
(corresponding to β0  and β1) so that they minimise the quantity: 
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=

n

i
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 It turns out that to minimise this quantity, we need to solve a system of 
simultaneous equations: 
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 And the estimates turn out to be: 
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 and b y b x0 1= −     [12] 
 
 
 Example 1 (continued): 
 
 In our example, the estimates are:  
 

  ( )
( ) 85.184

68.10
cov

,
1 ==

x
yxCovb  = 0.0577 

 
 and  b y b x0 1= −  = 3.33 - 0.0577(38.83) = 1.089. 
 
 Hence the regression equation is: 
 
  y = 1.089 + 0.057x  
 
 That is, for any individual, his/her cholesterol is completely determined by the 
equation: 
 
 Cholesterol = 1.089 + 0.057(Age) + e  
 
 where e is the specific error which is not accounted for by the equation (including 
measurement error) associated with the subject. For instance, for subject 1 (46 years old), 
his/her expected cholesterol is: 1.089 + 0.057 x 46 = 3.7475; when compared with his/her 
actual value of 3.5, the residual is e = 3.5 - 3.7475 = -0.2475. Similarly, the expected 
cholesterol value for subject 2 is 1.089 + 0.057 x 26 = 2.245 and is higher than his/her 
actual level by 0.3450. 
 
 The predicted value calculated using the above equation, together with the residuals 
(e) are tabulated in the following table.  
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 I.D Observed Predicted Residual 
  (O) (P) (e = O - E) 
   
 1 3.50 3.7475 -0.2475 
 2 1.90 2.2450 -0.3450 
 3 4.00 4.0942 -0.0942 
 4 2.60 2.8229 -0.2229 
 5 4.50 4.3832 0.1168 
 6 3.00 2.5339 0.4661 
 7 2.90 2.7073 0.1927 
 8 3.80 3.1696 0.6304 
 9 2.10 2.3606 -0.2606 
 10 3.80 3.5741 0.2259 
 11 4.10 4.3832 -0.2832 
 12 3.00 2.9962 0.00377 
 13 2.50 2.3606 0.1394 
 14 4.60 4.7299 -0.1299 
 15 3.20 3.4008 -0.2008 
 16 4.20 3.8631 0.3369 
 17 2.30 2.7073 -0.4073 
 18 4.00 3.9208 0.0792 
   
 
 
2.2. TEST OF HYPOTHESIS CONCERNING REGRESSION PARAMETERS. 
 
 To some large extent, the interest will lie in the values of slope. Interpretation of 
this parameter is meaningless without a knowledge of its distribution. Therefore, having 
calculate the estimates b1 and b0 , we need to determine the standard error of these 

parameters so that we can make inferences regarding their significance in the model. 
Before doing this, let us have a brief look at the significance of the term e. 
 
 We learned in earlier topic that if y  is the sample mean of a variable Y, then the 

variance of Y is given by ( )∑ −
− =

n

i
i yy

n 1

2

1
1 . Now, in the regression case, y  is actually equal 

to β0  + β1 xi  = $y . Hence, it is reasonable that the sample variance of the residuals e 
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should provide an estimator of σ2 in [10]. It is from this reasoning that the unbiased 
estimate of σ2 is defined as: 
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 It can be shown that the expected values of b1 and b0  are β1 and β0  (true 
parameters), respectively. Furthermore, from [13], it can be shown that the variances of b1 
and b0  are: 
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 Once can go a step further by estimating the covariance of b1 and b0  by: 

 
    ( ) ( ) ( )1

22
01, bsxbbCov −=     [16] 

 
 That is, b1 is normally distributed with mean β1 and variance given in [14], and b0  is 
normally distributed with mean β0  and variance given in [15]. It follows that the test for 
significance of b1 is the ratio 
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 which is distributed according to the t distribution with n-2 df. 
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 is a test for b0 , which is distributed according to the t distribution with n-2 df. 

 
 Example 1 (continued): 
 
 In our example, the estimate residual variance s2  is calculated as follows: 
 
  s2  = [(-0.2475)2 + (-0.3450)2 + . . . + (0.0792)2] / (18-2) 
       = 0.0916 
 

 We can calculate the corrected sum of square of AGE, ( )∑ −
=

n

i
i xx

1

2 , by working out 

from the estimate variance as: 
 

  ( )∑ −
=

n

i
i xx

1

2  = sx
2  (n - 1)  

           = 184.85 (17) 
           = 3142.45 
 
 Hence, the estimated variance of b1 is: 
 
   var(b1) = 0.0916 / 3142.45 = 0.00002914 
 
   SE(b1) = ( )1var b  = 0.00539. 

 
 A test of hypothesis of β1 = 0 can be constructed as:  
 
   t = b1 / SE(b1)  
     = 0.0578 / 0.00539   
     = 10.70 
 
 which is highly significant (p < 0.0001). 
 
 For the intercept we can estimate its variance as: 
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    = 0.049 
 
 And the test of hypothesis of β0  = 0 can be constructed as: 

 
   t = b0  / SE(b0 ) 

     = 1.089 / 0 049.  
     = 4.92 
 
 which is also highly significant (p < 0.001). 
 
 
2.3. ANALYSIS OF VARIANCE 
 
 An analysis of variance partitions the overall variation between the observations Y 
into variation which has been accounted for by the regression on X and residual or 
unexplained variation. Thus, we can say: 
 
    Total variation     =  Variation explained    +  Residual 
      about the mean      by regression model        variation 
 
In ANOVA notation, we can write equivalently: 
 
  SSTO    =  SSR +  SSE 
 
or,  
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 Now, SSTO is associated with n-1 df. For SSR, there are two parameters (b0 and b1) 

in the model, but the constraint ( )∑ −
=

n

i
i yy

1
ˆ  = 0 takes away 1df, hence it has finally 1 df. For 

SSE, there are n residuals (ei); however, 2 df are lost because of two constraints on the ei's 
associated with estimating the parameters β0 and β1  by the two normal equations see 
section 2.1). 
 
 We can assemble these data in an ANOVA table as follows: 
 
   
 Source df SS MS 
   

 Regression 1 SSR = ( )∑ −
=

n

i
i yy

1

2ˆ  MSR = SSR/1 

 Residual error n - 2 SSE = ( )∑ −
=

n

i
ii yy

1

2ˆ  MSE = SSE / (n-2) 

 Total n - 1 SSTO = ( )∑ −
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i
i yy

1

2  

   

 
 
 
 R-SQUARE 
 
 From this table it seems to be sensible to obtain a "global" statistic to indicate how 
well the model fits the data. If we divide the regression sum of square (variation due to 
regression model, SSR) by the total variation of Y (SSTO), we would have what 
statisticians called the coefficient of determination, which is denoted by R2: 
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  In fact, it can be shown that the coefficient of correlation r defined in [5] is equal to 

R2 .  
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 Obviously, R2 is restricted to 0 < R2 < 1. An R2 = 0 indicates that X and Y are 
independent (unrelated), whereas an R2 = 1 indicates that Y is completely determined by X. 
However, there are a lot of pitfalls in this statistic. A value of R2 = 0.75 is likely to be 
viewed with some satisfaction by experimenters. It is often more appropriate to recognise 
that there is still another 25% of the total variation unexplained by the model. We must ask 
why this could be, and whether a more complex model and/or inclusion of additional 
independent variables could explain much of this apparently residual variation. 
 
 A large R2 value does not necessarily mean a good model. Indeed, R2 can 
artificially high when either the slope of the equation is large or the spread of the 
independent variable is large. Also a large R2 can be obtained when straight lines are fitted 
to data that display non-linear relationships. Additional methods for assessing the fit of a 
model are therefore needed and will be described later. 
 
 
 F STATISTIC 
 
 An assessment of the significance of the regression (or a test of the hypothesis that 
β1 = 0) is made from the ratio of the regression mean square (MSR) to the residual mean 
square MSE (s2) which is an F-ratio with 1 and n-2 degrees of freedom. This calculation is 
usually exhibited in an analysis of variance table produced by most computer programs. 
 

   F
MSR

MSE
=     [18] 

 
 It is important that a highly significant F ratio should not seduce the experimenter to 
a belief that the straight line fits the data superbly. The F test is simply an assessment of the 
extend to which the fitted line has a slope which is different from zero. If the slope of the 
line is near zero, the scatter of the data points about the line would need to be small in order 
to obtain a significant F ratio. However, a situation with a slope very different from zero 
can give a highly significant F ratio with a considerable scatter of points about the line. 
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 The F test as defined in [18] is actually equivalent to the t test in t b

s

s

b s

s

x

x= =1

2

2

1 . 

The F test is therefore can be used for testing β1 0=  versus β1 0≠  and is not for testing 
one-sided alternatives.  
 
 
 Example 1 (continued): 
  
 In our example, the sum of squares due to regression line is: 
 

  SSR = ( )∑ −
=

n

i
i yy

1

2ˆ   

          = (3.7475 - 3.33)2 + (2.2450 - 3.33)2 + . . . . + (3.9208 - 3.33)2  
          = 10.4944 
 
 which is associated with 1 df, hence its mean square is 10.4944. 
 
 The sum of squares due to residuals is:  
 

  SSE = ( )∑ −
=

n

i
ii yy

1

2ˆ  

          = (-0.2475)2 + (0.3450)2 + . . . + (0.0792)2  
          = 1.4656 
 and is associated with 18-2 = 16 df, hence its mean square is  1.4656 / 16 = 0.0916 
 
 The F statistic is then:  
 
   F = 10.4944 / 0.0916 = 114.565. 
 
 
 Hence, the ANOVA table can be set up as follows: 
 
   
 Source df SS MS F-test 
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 Regression 1 10.4944 10.4944  114.565 
 Residual errors 16 1.4656 0.0916 
 Total 17 11.960 
   

 
 Accordingly, the coefficient of determination is: R2 =10.49 / 11.96 = 0.8775. This 
means that 87.75% of total variation in cholesterol between subjects is "explained" by the 
regression equation.  // 
 
 
 
2.3. ANALYSIS OF RESIDUALS AND THE DIAGNOSIS OF REGRESSION 
MODEL 
 
 A residual is defined as the difference between the observed and predicted y value, 
given by e y yi i i= − $ , the value which is not accounted for by the regression equation. 

Hence, an examination of this term should reveal how appropriate the equation is.  
 
However, these residuals do not have constant variance. In fact, var(ei) = (1-hi)s2, where hi 
is the ith diagonal element of the matrix H which is such that y i  = Hy. H is called the "hat 
matrix", since it defines the transformation that puts the "hat" on y! In view of this, it is 
preferable to work with the standardised residuals. In simple linear regression case, the 
standardised residual ri  is defined as: 

 

   r
e

MSEi
i=     [19] 

 
 These standardised residuals have mean 0 and variance 1. We can use ri  to verify 

assumptions of the regression model which we made in section 2.1. These are:  
 
 (a) are the regression function is not linear; 
 (b) the distributions of Y (cholesterol) do not have constant variance at all level of X 
(age) or equivalently the residuals do not have constant variances; 
 (c) the distributions of Y are not normal or equivalently the residuals are not normal; 
 (d) the residuals are not independent. 
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 Useful graphical methods for examining the standard assumptions of constant 
variance, normality of the error terms and appropriateness of the fitted model include: 
 
 -    A plot of residuals against fitted values to identify outliers, detect systematic 
departure from the model or detect non-constant variance; 
 
 -    A plot of residuals in the order in which the observations were taken to detect 
non-independence. 
 
 -    A normal probability plot of the residuals to detect from normality. 
 
 -    A plot of residuals against X can indicate whether a transformation of the 
original X variable is necessary, while a plot of residuals against X variables omitted from 
the model could reveal whether the y variable depends on the omitted factors. 
 
 
 OUTLIERS 
 
 Outliers in regression are observations that are not well fitted by the assumed 
model. Such observations will have large residuals. A crude rule of thumb is that an 
observation with a standardised residual greater than 2.5 in absolute value is an outlier and 
the source of that data point should be investigated, if possible. More often than not, the 
only evidence that something has gone wrong in the data generating process is provided by 
the outliers themselves ! A sensible way of proceeding with the analysis is to determine 
whether those values have substantial effect on the inferences to be drawn from the 
regression analysis, that is, whether they are influential. 
 
  
 INFLUENTIAL OBSERVATIONS 
 
 Generally speaking, it is more important to focus on influential outliers. But it is not 
only outliers that can be influential. If observation is separated from the others in terms of 
the values of the X-variables, this observation is likely to influence the fitted regression 
mode. Observations separated from other in this way will have a large value of hi. We call 
hi the leverage, A rough guide is that observations with hi > 3p/n are influential, where p is 
the number of beta coefficients in the model (in our example p = 2). 
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 There is a problem (drawback) to using the leverage to identify influential values - 
it does not contain any information about the value of the Y variable, only the value of the 
X variables. To detect an influential observation, a natural statistic to use is a scaled version 
of ( )( )2ˆ iji yy −  where ( )jiŷ  is the fitted value for the jth observation when the ith 

observation is omitted from the fit. This leads to the so-called Cook's statistic. Fortunately, 
to obtain the value of this statistic, we do not need to carry out a regression fit, omitting 
each point in term, for the statistic given by: 
 

    ( )i

ii
i hp

hrD
−
−

=
1

2

 
 
 Observations with relatively large values of Di  are defined as influential. 
 
 
 Example 1 (continued): Calculations of studentised residuals and Cook's D statistic 
for each observation are given in the following table: 
 
ID Observed  Predicted Std Err  Std. Res      Cook's D 

  

1     3.5000    3.7475    0.292    -0.849  |     *|      |     0.028 

2     1.9000    2.2450    0.276    -1.250  |    **|      |     0.158 

3     4.0000    4.0942    0.285    -0.330  |      |      |     0.007 

4     2.6000    2.8229    0.290    -0.768  |     *|      |     0.026 

5     4.5000    4.3832    0.277     0.421  |      |      |     0.017 

6     3.0000    2.5339    0.284     1.638  |      |***   |     0.177 

7     2.9000    2.7073    0.288     0.669  |      |*     |     0.023 

8     3.8000    3.1696    0.294     2.146  |      |****  |     0.142 

9     2.1000    2.3606    0.280    -0.931  |     *|      |     0.074 

10    3.8000    3.5741    0.293     0.770  |      |*     |     0.019 

11    4.1000    4.3832    0.277    -1.021  |    **|      |     0.100 

12    3.0000    2.9962    0.292     0.013  |      |      |     0.000 

13    2.5000    2.3606    0.280     0.498  |      |      |     0.021 

14    4.6000    4.7299    0.264    -0.493  |      |      |     0.039 

15    3.2000    3.4008    0.294    -0.683  |     *|      |     0.014 

16    4.2000    3.8631    0.290     1.162  |      |**    |     0.061 

17    2.3000    2.7073    0.288    -1.413  |    **|      |     0.102 

18    4.0000    3.9208    0.289     0.274  |      |      |     0.004 
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Figure 1: Plot of standardised residuals against predicted value of y. 
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2.4. SOME FINAL COMMENTS 
 
(A) INTERPRETATION OF CORRELATION 
 
 The following is an extract from D Altman's comments:  
 
 "Correlation coefficients lie within the ranged -1 to +1, with the midpoint of zero 
indicating no linear association between the two variables. A very small correlation does 
not necessarily indicate that two variables are not associated, however. To be sure of this, 
we should study a plot of the data, because it is possible that the two variables display a 
peculiar (i.e. non-linear) relationship. For example, we should not observe much, if any, 
correlation between the average midday temperature and calendar moth because there is a 
cyclic pattern. More common is the situation of a curved relationship between two 
variables, such as between birthweight and length of gestation. In this case, Pearson's r will 
underestimate the association as it is a measure of linear association. The rank correlation 
coefficient is better here as it assesses in a more general way whether the variables tend to 
rise together (or move in opposite direction).  
 
 It is surprising how unimpressive a correlation of 0.5 or even 0.7 is when a 
correlation of this magnitude is significant at p<0.05 level with a sample size of 9 or 15 
subjects. Whether these are important is another matter. Feinstein commented on the lack 
of clinical relevance of a statistically significant correlation of less than 0.1 found in a 
sample of 6000. The problem of clinical relevance is one that must be judged on its merits 
in each case, and depends on the context. For example, the same small correlation may be 
important in an epidemiological study but unimportant clinically. 
 
 One way of looking at the correlation that helps to modify the over-enthusiasm is to 
calculate the R-square value, which is the percentage of the variability of the data that is 
"explained" by the association between the two variables. So, a correlation of 0.7 implies 
that just 49% of the variability may be put down to the observed association. 
 
 Interpretation of association is often problematic because causation can not be 
directly inferred. If we observe an association between two variables X and Y, there are 
several possible explanations. Excluding the possibility that it is a chance finding, it may be 
because: 
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  X causes (influences) Y 
  Y influences X 
  Both X and Y are influenced by one or more other variables. 
 
 Correlation is often used as an exploratory method for investigating inter-
relationships among many variables, for which purpose it is most obvious to use hypothesis 
tests. Although in principle, this approach is often over-done. The problem is that even with 
a modest number of variables, the number of coefficients is large: 10 variables yield (10 x 
9)/2 = 45 r values, and 20 variables yields 190 r values. On of the 20 of these will be 
significant at the level of 5% purely by chance, and these can not be distinguished from 
genuine association. Furthermore, the magnitude of correlation that is significant at 5% is 
dependent on sample size. In a large sample,, even if there are several significant r values 
of around 0.2 to 0.3, say, these are unlikely to be very useful. While this way of looking at 
large numbers of variables can be helpful when one really has no prior hypothesis, 
significant association really needs to be confirmed in another set of data before credence 
can be given to them. 
 
 Another common problem of interpretation occurs when we know that each of two 
variables is associated with a third variables. For example, if X is positively correlated with 
Y and Y is positively correlated with Z, it is tempting to say that X and Z must be 
positively correlated. Although this may indeed be true, such an inference is unjustified - 
we can not say anything about the correlation between X and Z. The same is true when one 
has observed no association. For example, Mazess et al (1984) the correlation between age 
and height was 0.05 and between weight and %fat was 0.03. This does not imply that the 
correlation between age and %fat was also near zero.  In fact, this correlation was 0.79. 
Correlation can not be inferred from direct associations." 
 
 
(B) INTERPRETATION OF REGRESSION 
 
 The variability among a set of observations may be partly attributed to known 
factors and partly to unknown factors; the latter is often termed "random variation". In 
linear regression, we see how much of the variability in the response variable can be 
attributed to different values of the predictor variable, and the scatter either side of the 
fitted line shows unexplained variability. Because of this variability, the fitted line is only 
an estimated of the relation between these variables in the population. As with other 
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estimates (such as a sample mean) there will be uncertainty associated with the estimated 
slope and intercept. The confidence intervals for the whole line and prediction intervals for 
individual subjects show other aspect of variability. The latter are especially useful as 
regression is often used to make predictions about individuals. 
 
 It should be remembered that the regression line should not be used to make 
predictions for X values outside the range of values in the observed data. Such 
extrapolation is unjustified as we have no evidence about the relationship beyond the 
observed data. A statistical model is only an approximation. One rarely believes, for 
example, that the true relationship is exactly linear, but the linear regression equation is 
taken as a reasonable approximation for the observed data. Outside the range of the 
observed data one can not safely use the same equation. Thus, we should not use the 
regression equation to predict value beyond what we have observed.  
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III. EXERCISES 
 
1. Consider the simple regression equation [8]. Consider the least square residuals, 

given by y yi i− $  where i = 1, 2, 3, . . ., n. Show that  

 (a) 1
1n

y yi
i

n

$
=
∑ = . (b) ( ) 0ˆ

1
=∑ −

=

n

i
i yy  

2. The following data represent diastolic blood pressures taken during rest. The x values 
denote the length of time in minutes since rest began, and the y values denote 
diastolic blood pressures. 

 
 x: 0 5 10 15 20 
 y: 72 66 70 64 66 
 
 (a) Construct a scatter plot. 
 (b) Find the coefficient of correlation and the linear regression equation of y on x. 
 (c) Calculate 95% confidence interval for the slope and intercept. 
 (d) Calculate 95% confidence interval for the predicted value of y when x = 10. 
 
3. The following table shows resting metabolic rate (RMR) (kcal/24 hr) and body 

weight (kg) of 44 women (Owen et al 1986). 
 
 Wt: 49.9 50.8 51.8 52.6 57.6 61.4 62.3 64.9 43.1 48.1 52.2 
 RMR: 1079 1146 1115 1161 1325 1351 1402 1365 870 1372 1132 
 
 Wt: 53.5 55.0 55.0 56.0 57.8 59.0 59.0 59.2 59.5 60.0 62.1 
 RMR: 1172 1034 1155 1392 1090 982 1178 1342 1027 1316 1574 
 
 Wt: 64.9 66.0 66.4 72.8 74.8 77.1 82.0 82.0 83.4 86.2 88.6 
 RMR: 1526 1268 1205 1382 1273 1439 1536 1151 1248 1466 1323 
 
 Wt: 89.3 91.6 99.8 103 104.5 107.7 110.2 122.0 123.1 125.2 143.3 
 RMR: 1300 1519 1639 1382 1414 1473 2074 1777 1640 1630 1708. 
 
 (a) Perform linear regression analysis of RMR on body weight. 
 (b) Examine the distribution of residuals. Is the analysis valid? 
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 (c) Obtain a 95% confidence interval for the slope of the line. 
 (d) Is it possible to use an individual's weight to predict their RMR to within 250 

kcal/24 hr ? 
 
4. Digoxin is a drug that is largely eliminated unchanged in the urine. In a study by 

Halkin et al. 1975, in which the authors commented:  
 (a) Its renal clearance was correlated with creatinine clearance; 
 (b) it clearance was independent of urine flow.  
 The authors provided data showing measurements of these three variables from 35 

inpatients being treated with digoxin for congestive heart failure. 
 
 Patient Clearance Creatinine Digoxin Urin flow 
   (ml/min/1.73 m2)   (ml/min) 
   
  1 19.5 17.5 0.74 
  2 24.7 34.8 0.43 
  3 26.5 11.4 0.11 
  4 31.1 29.3 1.48 
  5 31.3 13.9 0.97 
  6 31.8 31.6 1.12 
  7 34.1 20.7 1.77 
  8 36.6 34.1 0.70 
  9 42.4 25.0 0.93 
  10 42.8 47.4 2.50 
  11 44.2 31.8 0.89 
  12 49.7 36.1 0.52 
  13 51.3 22.7 0.33 
  14 55.0 30.7 0.80 
  15 55.9 42.5 1.02 
  16 61.2 42.4 0.56 
  17 63.1 61.1 0.93 
  18 63.7 38.2 0.44 
  19 66.8 37.5 0.50 
  20 72.4 50.1 0.97 
  21 80.9 50.2 1.02 
  22 82.0 50.0 0.95 



29 

  23 82.7 31.8 0.76 
  24 87.9 55.4 1.06 
  25 101.5 110.6 1.38 
  26 105.0 114.4 1.85 
  27 110.5 69.3 2.25 
  28 114.2 84.8 1.76 
  29 117.8 63.9 1.60 
  30 122.6 76.1 0.88 
  31 127.9 112.8 1.70 
  32 135.6 82.2 0.98 
  33 136.0 46.8 0.94 
  34 153.5 137.7 1.76 
  35 201.1 76.1 0.87 
   
  
 (a) Do these data support statements (a) and (b) above? 
 
5. Consider the following 4 data sets. Note that X1 = X2 = X4. Fit a linear regression 

equation with Y as a dependent variable and X as an independent variable. What is the 
most striking feature from these data sets. Carry out a residual plot for each data set 
and comment on the result.  

 
 X1 Y1 X2 Y2 X3 Y3 X4 Y4 
         

 4 4.26 4 3.1 8 6.58 4 5.39 
 5 5.68 5 4.74 8 5.76 5 5.73 
 6 7.24 6 6.13 8 7.71 6 6.08 
 7 4.82 7 7.26 8 8.84 7 6.42 
 8 6.95 8 8.14 8 8.47 8 6.77 
 9 8.81 9 8.77 8 7.04 9 7.11 
 10 8.04 10 9.14 8 5.25 10 7.46 
 11 8.33 11 9.26 8 5.56 11 7.81 
 12 10.84 12 9.13 8 7.91 12 8.15 
 13 7.58 13 8.74 8 6.89 13 12.74 
 14 9.96 14 8.10 9 12.50 14 8.84 
 


